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SUMMARY

The stabilized space–time fluid–structure interaction (SSTFSI) techniques developed by the Team for
Advanced Flow Simulation and Modeling (T�AFSM) are applied to FSI modelling in arterial fluid
mechanics. Modelling of flow in arteries with aneurysm is emphasized. The SSTFSI techniques used are
based on the deforming-spatial-domain/stabilized space–time (DSD/SST) formulation and include the en-
hancements introduced recently by the T�AFSM to increase the scope, accuracy, robustness and efficiency
of these techniques. The arterial structures can be modelled with the membrane or continuum elements,
both of which are geometrically nonlinear, and the continuum element can be made of linearly elastic or
hyperelastic material. Test computations are presented for cerebral and abdominal aortic aneurysms and
carotid-artery bifurcation, where the arterial geometries used in the computations are close approximations
to the patient-specific image-based data. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

One of the major computational challenges in cardiovascular fluid mechanics is accurate modelling
of the fluid–structure interactions (FSI) between the blood flow and arterial walls. The blood flow
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902 T. E. TEZDUYAR ET AL.

depends on the arterial geometry, and the deformation of the arterial wall depends on the blood flow.
The equations governing the blood flow and arterial deformation need to be solved simultaneously,
with proper kinematic and dynamic conditions coupling the two physical systems. Much has been
accomplished in FSI modelling research since the early 1990s (see, for example, [1–35]), and
a good portion of that FSI research has been directed towards arterial fluid mechanics (see, for
example, [19, 22, 36–40]).

The deforming-spatial-domain/stabilized space–time (DSD/SST) formulation [1–3, 9] was
introduced by the Team for Advanced Flow Simulation and Modeling (T�AFSM)‡ in 1991 as
a general-purpose interface-tracking (i.e. moving mesh) technique for simulation of flow problems
with moving boundaries or interfaces. The formulation is based on the streamline-upwind/Petrov–
Galerkin (SUPG) [41, 42] and pressure-stabilizing/Petrov–Galerkin (PSPG) [1, 43] methods. An
earlier version of the pressure stabilization, for Stokes flows, was introduced in [44]. The stabilized
space–time formulations were introduced and tested earlier by other researchers in the context of
problems with fixed spatial domains (see, for example, [45]).

The DSD/SST formulation and the mesh update methods [46–48] developed by the T�AFSM
are the core technologies for the space–time FSI techniques introduced by the T�AFSM (see,
for example, [4, 5, 7, 12, 15, 20, 21, 28]). These space–time FSI techniques have been used in a
number of 3D FSI computations in arterial fluid mechanics (see [36–40]), emphasizing cerebral
aneurysms, with the arterial models extracted from computed tomography. In those computations,
because the arteries modelled have relatively large diameters, the blood was assumed to behave
like a Newtonian fluid. The arterial structures were modelled with continuum elements, which
were geometrically nonlinear, made of linearly elastic material. The coupled fluid and structural
mechanics and mesh-moving equations were solved with a block-iterative coupling technique (see
[20, 21, 49] for comparative descriptions of the block-iterative, quasi-direct and direct coupling
techniques). The inflow boundary condition used in the computations is a pulsatile velocity profile,
which closely represents the measured flow rate during a heartbeat cycle. We provide here a brief,
chronological review of those computations.

A journal article [36] published in 2004 by the Japan Society of Mechanical Engineers is
where arterial fluid mechanics computations with the space–time FSI techniques introduced by the
T�AFSM were first reported. Segments of two different middle cerebral arteries with aneurysm
were modelled—a single-artery segment from a 57-year-old male and a bifurcating-artery segment
from a 59-year-old female. The FSI computations showed that taking the arterial-wall deformation
into account significantly influences the calculation of the haemodynamic factors, including the
wall shear stress (WSS) distribution. FSI modelling of a segment of the internal carotid artery of a
male patient in his 70s was reported first in a conference paper [37]. The computations showed the
importance of taking into account the FSI between the blood flow and the arterial walls of a sharply
curved artery. The journal version of the material reported in [37] was presented in [38]. Modelling
of the FSI and WSS for aneurysmal conditions with high blood pressure was reported in a journal
article [39]. The cerebral-artery segment modelled was the same as the bifurcating-artery segment
modelled in [36]. The computations showed that hypertension makes a significant difference in
the predicted values of not only the mechanical stress in the aneurysmal wall but also the WSS.

‡This team name was intended to imply the research team led by Tezduyar also prior to when the team assumed
this specific name.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:901–922
DOI: 10.1002/fld



MODELLING OF FLUID–STRUCTURE INTERACTIONS 903

The material presented in [40] (a journal article) is a translated, revised and expanded version of
what was reported in [36].

New, enhanced versions of the DSD/SST and space–time FSI techniques were recently intro-
duced in [49] to increase the scope, accuracy, robustness and efficiency of these techniques. In these
new versions, the aspects of the FSI solution process that were enhanced include the DSD/SST
formulation, the fluid–structure interface conditions, the preconditioning techniques used in itera-
tive solution of the linear equation systems, and a contact algorithm protecting the quality of the
fluid mechanics mesh between the structural surfaces coming into contact. A number of 3D numer-
ical examples computed with these new stabilized space–time FSI (SSTFSI) techniques were also
presented in [49]. Our objective in this paper, which is for all practical purposes a continuation
of [49], is to extend the new SSTFSI techniques to FSI modelling in arterial fluid mechanics.
The structural modelling for the arteries can be based on the membrane or continuum elements,
both of which are geometrically nonlinear, and the continuum element can be made of linearly
elastic or hyperelastic (Mooney–Rivlin) material. The test computations we will be presenting in
this paper are for cerebral and abdominal aortic aneurysms and carotid-artery bifurcation, where
the arterial geometries used in the computations are close approximations to the patient-specific
image-based data. In computations involving cerebral aneurysms, the arterial geometries are close
approximations to the geometries used in the computations described in the preceding paragraph.
However, it is not our objective to conduct arterial fluid mechanics studies at a level of detail seen
in the papers cited in the preceding paragraph. Our objective is to test the new SSTFSI techniques
on arterial fluid mechanics computations and show that these techniques can successfully deal with
different types of arterial problems and structural models.

Because this paper is essentially a continuation of [49], we only provide here the mathematical
models and computational techniques that go beyond those described in [49]. These additional
topics are basically related to the structural modelling of the arteries, covered in Section 2. General
conditions for the test computations are given in Section 3, and the test computations themselves
are presented in Section 4. The concluding remarks are given in Section 5.

2. STRUCTURAL MODELS FOR THE ARTERIES

The governing equations for the structural model, the corresponding finite element formulation,
and how that formulation couples with the rest of the FSI system remain the same as they were
given in [49]. For the arterial structural models we cover here, what makes one structural element
model different from the other is the manner in which the second Piola–Kirchoff stress tensor S
is defined.

2.1. Membrane element

For the membrane element, the expression for S is given in Section 2.2 of [49].

2.2. Continuum element

2.2.1. Linearly elastic material. For the continuum element made of linearly elastic material, the
expression for S is given as

Si j = (�sGi jGkl + �s(GilG jk + GikG jl))Ekl (1)
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904 T. E. TEZDUYAR ET AL.

where �s and �s are the Lamé constants, Gi j are the contravariant components of the metric tensor
in the original configuration, and Ekl are the components of the Cauchy–Green strain tensor.

2.2.2. Hyperelastic (Mooney–Rivlin) material. For the continuum element made of hyperelastic
(Mooney–Rivlin) material, the expression for S is given as

Si j = 2(C1 + C2G
klgkl)G

i j − 2C2G
ikgklG

l j + (KPEN ln(
√
I3) − 2(C1 + 2C2))g

i j (2)

where C1 and C2 are the Mooney–Rivlin material constants, and gkl and gi j are the covariant and
contravariant components of the metric tensor in the deformed configuration. The incompressibility
constraint is enforced with the penalty term KPEN ln(

√
I3) (see [50]). Here I3 is the third invariant

of the Green–Lagrange strain tensor, and KPEN is a penalty parameter determined based on the
expression given in [51] for the bulk modulus:

KPEN = 2(C1 + C2)

(1 − 2�PEN)
(3)

where �PEN (with a value close to 0.50) is the ‘penalty’ Poisson’s ratio we use in the expression
in place of the actual Poisson’s ratio.

3. GENERAL CONDITIONS FOR THE TEST COMPUTATIONS

All computations were carried out in a parallel computing environment, using PC clusters. The
meshes were generated on a single node of the cluster used. In all cases computed, the fluid and
structure meshes are compatible at the fluid–structure interface. All computations were completed
without any remeshing. In all cases, the fully discretized, coupled fluid and structural mechanics
and mesh-moving equations were solved with the quasi-direct coupling technique (see Section 5.2
in [49]). In solving the linear equation systems involved at every nonlinear iteration, the GMRES
search technique [52] was used with a diagonal preconditioner.

3.1. Fluid and structure properties

As it was done for the computations reported in [36–40], the blood is assumed to behave like a
Newtonian fluid. The density and kinematic viscosity are set to 1000 kg/m3 and 4.0× 10−6 m2/s.
The material density of the arterial wall is known to be close to that of the blood and therefore set
to 1000 kg/m3. The stiffness values used for the arteries are comparable to those used in [36–40],
where the values used were determined (see [40]) by comparison to experimental values. The
stiffness value used in each test case is given in the individual description of that test case. Arteries
are surrounded by tissues, and we expect those tissues to have a damping effect on the structural
dynamics of the arteries. Therefore, we add a mass-proportional damping, which also helps in
removing the high-frequency modes of the structural deformation. The damping coefficient � used
in each case is given in the individual description of that case.

3.2. Boundary conditions

In all the test cases computed, we have a single inflow boundary where we specify the velocity
profile as a function of time. The profile is similar to the one obtained by using the Womersley
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solution of a pulsating flow [53]. At the outflow boundaries, we specify traction boundary con-
ditions. In test cases with two outflow boundaries, we specify the same condition for both. The
traction boundary condition is based on the pressure profile applicable to the case computed. The
pressure profile, as a function of time, is obtained from an approximate solution [38] of the Wind-
kessel model [54]. The parameters in the Windkessel model are set in such a way that the range for
the pressure profile is approximately from 80 to 120mmHg for normal blood pressure (NBP) and
from 100 to 170mmHg for high blood pressure (HBP). On the arterial walls, we specify no-slip
boundary conditions for the flow. In the structural mechanics part, as boundary condition at the
ends of the arteries, we set the displacement to zero at those edges (for the membrane elements)
and faces (for the continuum elements).

3.3. Simulation sequence

In most of the simulations carried out by the T�AFSM, the FSI computations are preceded by
a set of pre-FSI computations that provide us a good starting point for the FSI computations.
These pre-FSI computations include the fluid-only and structure-only computations. We have two
options for the pre-FSI generation of the fluid mesh. We can generate it by starting with a mesh
corresponding to the initial shape of the structure and updating it as the structure-only computation
proceeds or generate it after the structure-only computation is completed. We built two simulation
sequences that were used in the computations reported here. Our experience with the first one
helped us design the second one.

3.3.1. Fluid→ structure→FSI (F→ S→FSI) sequence.
Step 1: Generate the fluid and structure meshes based on the shape of the unstressed structure.
Step 2: Compute a developed flow field while holding the structure rigid.

• The outflow traction is set to a value close to 80mmHg for NBP and 100mmHg for HBP.
• The inflow velocity is set to a value corresponding to the outflow traction.

Step 3: Compute the structural deformation, with the fluid stresses at the interface held steady
at their values from Step 2, and simultaneously update the fluid mesh.

• Structural deformation can be determined with a steady-state computation or a time-dependent
computation that eventually yields a steady-state solution.

• For the steady-state computation, �t → ∞ and � = 0 in Equation (21) in [49], the num-
ber of time steps is one, and the initial displacement, velocity and acceleration are set
to zero.

• The mesh quality obtained with the time-dependent computation is better than the one obtained
with the steady-state computation.

Step 4: Compute the FSI with the inflow and outflow conditions held steady at the values used
in Step 2.

• Sometimes, to prevent a sudden increase in the structural acceleration at the start of this step,
it may be necessary to begin with an increased structural mass that would later be decreased
back to its actual value. An unrealistically large acceleration can initiate an instability that is
subsequently magnified.

Step 5: Compute the FSI with the inflow and outflow conditions pulsating.
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3.3.2. Structure→ fluid→FSI (S→F→FSI) sequence. Analysis of the results obtained with the
F→S→FSI sequence revealed that the fluid pressure is spatially almost uniform. Even when
the outflow traction is pulsating, although the pressure changes as a function of time, spatially it
remains nearly uniform. The S→F→FSI sequence was built based on these considerations.

Step 1: Generate the structure mesh based on the shape of the unstressed structure.
Step 2: Compute the structural deformation with a uniform fluid pressure held steady at a value

close to 80mmHg for NBP and 100mmHg for HBP:

• The structural deformation can be computed, as it was done in Step 3 of the F→S→FSI
sequence, with a steady-state computation or a time-dependent computation that eventually
yields a steady-state solution.

Step 3: Generate the fluid mesh based on the shape of the deformed structure.
Step 4: Compute a developed flow field while holding the structure from Step 3 rigid.

• The outflow traction is set to a value close to 80mmHg for NBP and 100mmHg for HBP.
• The inflow velocity is set to a value corresponding to the outflow traction.

Step 5: Continue from Step 4 of the F→S→FSI sequence.

4. TEST COMPUTATIONS

4.1. Middle cerebral artery with aneurysm—single-artery segment

The arterial geometry used is a close approximation to the patient-specific image-based geometry
used in [40]. The geometry used in [40] was extracted from the computed tomography model of
a segment of the middle cerebral artery of a 57-year-old male with aneurysm. The diameter and
length of the artery are 3.0 and 15mm, and the size of the aneurysm is 6mm. The volumetric
inflow rate used is also a close approximation to the one used in [40], which can be found in
[38, 39]. The problem geometry and the pulsating inflow velocity profile as a function of time are
shown in Figures 1 and 2.

4.1.1. Computations with the membrane element. Test computations are carried out for NBP and
HBP in an artery segment with uniform and variable wall thickness (UWT and VWT). Figure 3
shows the NBP and HBP profiles, which were calculated in the way described in Section 3.2. The
traction condition at the outflow boundary is based on these pressure profiles. Figure 4 shows the
wall-thickness distribution for the artery segment with variable wall thickness. In all four cases
(NBP-UWT, NBP-VWT, HBP-UWT and HBP-VWT), the wall thickness, stiffness and Poisson’s
ratio for the artery are 0.3mm, 5.0× 105 N/m2 and 0.45, respectively. The wall thickness for the
aneurysm is 0.3mm for the UWT cases and 0.1mm for the VWT cases.

The mesh for the artery consists of 3726 nodes and 7388 three-node triangular elements.
The fluid mechanics mesh contains 10 987 nodes and 53 645 four-node tetrahedral elements. The
computations are carried out with the SSTFSI-TIP1 technique (see Remarks 5 and 10 in [49]) and
the SUPG test function option WTSA (see Remark 2 in [49]). The stabilization parameters used
are those given by Equations (7)–(13) in [49] for the NBP-UWT case and Equations (7)–(12) and
(17) in [49] for all other cases. The damping coefficient � is set to 6.0× 103 s−1. The time-step
size is 3.333× 10−3 s. The number of nonlinear iterations per time step is 5, and the number
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Figure 1. Middle cerebral artery with aneurysm—single-artery segment. Problem geometry.

Figure 2. Middle cerebral artery with aneurysm—single-artery segment. Pulsating inflow velocity.

of GMRES iterations per nonlinear iteration is 150 and 225 for the NBP and HBP cases. The
F→S→FSI sequence is used in the computations.

Figure 5 shows the deformed shapes of the aneurysm for all four cases. The order of the cases
from minimum to maximum deformation is NBP-UWT, HBP-UWT, NBP-VWT and HBP-VWT.
In all four cases we achieve good mass balance. We verify the mass balance by comparing the
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Figure 3. Middle cerebral artery with aneurysm—single-artery segment. Normal and high
blood pressure (NBP and HBP) profiles.

Figure 4. Middle cerebral artery with aneurysm—single-artery segment. Wall-thickness distribution for
the artery segment with variable wall thickness (VWT).

rate of change for the artery volume and the difference between the volumetric inflow and outflow
rates. Figure 6 shows the mass balance for the NBP-UWT case. In all four cases, we see a
significant circulation inside the aneurysm. Figure 7 shows the flow field at various instants for the
NBP-UWT case.

4.1.2. Computations with the continuum elements. Test computations with the continuum element
are carried out for both linearly elastic and hyperelastic (Mooney–Rivlin) materials. The traction
condition at the outflow boundary is based on the NBP profile shown in Figure 3 in Section 4.1.1.
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Figure 5. Middle cerebral artery with aneurysm—single-artery segment. Computed with the membrane
element. Deformation of the aneurysm for all four cases. The order of the cases from minimum to

maximum deformation is NBP-UWT, HBP-UWT, NBP-VWT and HBP-VWT.

Figure 6. Middle cerebral artery with aneurysm—single-artery segment. Computed with the membrane
element. Verification of mass balance for the NBP-UWT case. Volumetric inflow rate, difference between

the volumetric inflow and outflow rates and rate of change for the artery volume.

The wall thickness for the artery is 0.3mm. For the linearly elastic material, the stiffness and
Poisson’s ratio are 5.0× 105 N/m2 and 0.45. For the hyperelastic material, the Mooney–Rivlin
material constants C1 and C2 and the penalty Poisson’s ratio are 4.762× 104, 3.571× 105 N/m2

and 0.45, respectively.
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Figure 7. Middle cerebral artery with aneurysm—single-artery segment. Computed with the membrane
element. Flow field at various instants for the NBP-UWT case. Velocity vectors coloured by magnitude.

Figure 8. Middle cerebral artery with aneurysm—single-artery segment. Computed with the continuum
element made of linearly elastic material. Verification of mass balance. Volumetric inflow rate, difference

between the volumetric inflow and outflow rates and rate of change for the artery volume.
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Figure 9. Middle cerebral artery with aneurysm—single-artery segment. Computed with the continuum
element made of hyperelastic (Mooney–Rivlin) material. Verification of mass balance. Volumetric inflow
rate, difference between the volumetric inflow and outflow rates and rate of change for the artery volume.

The mesh for the artery consists of 13 332 nodes and 52 944 four-node tetrahedral elements,
with 4444 nodes and 8824 three-node triangular elements on the fluid–structure interface. The fluid
mechanics mesh contains 9568 nodes and 43 960 four-node tetrahedral elements. The computations
are carried out with the SSTFSI-SV technique (see Remarks 6 and 10 in [49]) and the SUPG test
function option WTSE (see Remark 2 in [49]). The stabilization parameters used are those given
by Equations (9)–(12) and (14)–(17) in [49]. The damping coefficient � is set to 1.5× 104 s−1.
We note that, compared to the membrane element, a higher damping coefficient is used with the
continuum elements because they have a different stiffness in the structural model. The time-step
size is 3.333× 10−3 s. The number of nonlinear iterations per time step is 7, and the number of
GMRES iterations per nonlinear iteration is 200.

We use the ‘Selective Scaling’ technique (see Remark 14 in [49]) to dynamically shift the
emphasis between the fluid and structure parts. The scales used for the fluid and structure parts at
each nonlinear iteration of a time step are given below:

Iteration 1: fluid scale= 1.00, structure scale= 0.00.
Iteration 2: fluid scale= 0.00, structure scale= 1.00.
Iteration 3: fluid scale= 1.00, structure scale= 0.00.
Iterations 4–7: fluid scale= 1.00, structure scale= 0.01.

The scales used in the first three nonlinear iterations reduce the fluid–structure coupling to block-
iterative coupling (see Section 5.1 in [49]). This allows the individual parts to converge significantly
in the early stages of the iterations. The scales used in the subsequent nonlinear iterations maintain
the quasi-direct coupling technique, while emphasizing the fluid part, which is found to be in more
need of emphasis in these computations. The F→S→FSI sequence is used in the computations.

For both the linearly elastic and hyperelastic cases we achieve good mass balance. Figures 8 and 9
show the mass balance for those cases. We note that the deformation is larger for the hyperelastic
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Figure 10. Middle cerebral artery with aneurysm—single-artery segment. Computed
with the continuum element made of linearly elastic material. Flow field at various

instants. Velocity vectors coloured by magnitude.

case. This difference and how the Mooney–Rivlin material constants should be selected need fur-
ther investigation. Figures 10 and 11 show the flow field for the linearly elastic and hyperelastic
cases at various instants.

4.2. Middle cerebral artery with aneurysm—bifurcating-artery segment

The arterial geometry used is a close approximation to the patient-specific image-based geometry
used in [39, 40]. The geometry used in [39, 40] was extracted from the computed tomography
model of a segment of the middle cerebral artery of a 59-year-old female with aneurysm. The
diameter of the artery segment is 3.0mm at the inflow, and 2.4 and 1.8mm at the two outflow
ends. The problem geometry is shown in Figure 12. The volumetric inflow rate used is also a
close approximation to the one used in [39, 40], which can be found in [38, 39]. The pulsating
inflow velocity profile as a function of time is the same as that shown in Figure 2 in Section 4.1.
The traction condition at the outflow boundary is based on the NBP profile shown in Figure 3
in Section 4.1.1. The structural model is based on the membrane element. The wall thickness,
stiffness and Poisson’s ratio for the artery are 0.3mm, 5.0× 105 N/m2 and 0.45, respectively.

The mesh for the artery consists of 6119 nodes and 12 150 three-node triangular elements.
The fluid mechanics mesh contains 14 410 nodes and 66 440 four-node tetrahedral elements. The
computations are carried out with the SSTFSI-TIP1 technique (see Remarks 5 and 10 in [49]) and
the SUPG test function option WTSA (see Remark 2 in [49]). The stabilization parameters used
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Figure 11. Middle cerebral artery with aneurysm—single-artery segment. Computed with the
continuum element made of hyperelastic (Mooney–Rivlin) material. Flow field at various

instants. Velocity vectors coloured by magnitude.

Figure 12. Middle cerebral artery with aneurysm—bifurcating-artery segment. Problem geometry.
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Figure 13. Middle cerebral artery with aneurysm—bifurcating-artery segment. Verification of mass
balance. Volumetric inflow rate, difference between the volumetric inflow and outflow rates and rate

of change for the artery volume.

are those given by Equations (7)–(12) and Equation (17) in [49]. The damping coefficient � is set
to 6.0× 103 s−1. The time-step size is 6.666× 10−3 s. The number of nonlinear iterations per time
step is 5, and the number of GMRES iterations per nonlinear iteration is 150. The F→S→ FSI
sequence is used in the computations. Figure 13 shows the mass balance and Figure 14 shows the
flow field at various instants.

4.3. Carotid-artery bifurcation

The arterial geometry used is an approximation to the image-based geometry found in [55], with
the arterial diameter approximated from [56] and the wall thickness coming from [57]. The length
of the artery segment is 36mm. The diameter is 4.5mm at the inflow end, 3.0 and 3.3mm at the
two outflow ends, and 5mm at the carotid sinus. The problem geometry is shown in Figure 15.
The pulsating inflow velocity profile as a function of time is not shown here but has the same
form as that shown in Figure 2 in Section 4.1. The minimum and maximum values are 0.1 and
0.8m/s. The maximum value is based on the data found in [58]. The traction condition at the
outflow boundaries is based on a NBP profile calculated in the way described in Section 3.2. That
pressure profile is similar to the NBP profile given in Figure 3 in Section 4.1.1. The structural
model is based on the membrane element. The wall thickness, stiffness and Poisson’s ratio for the
artery are 0.85mm, 5.0× 105 N/m2 and 0.45, respectively.

The mesh for the artery consists of 4943 nodes and 9798 three-node triangular elements. The
fluid mechanics mesh contains 23 392 nodes and 131 052 four-node tetrahedral elements. The
computations are carried out with the SSTFSI-SV technique (see Remarks 6 and 10 in [49]) and
the SUPG test function option WTSE (see Remark 2 in [49]). The stabilization parameters used
are those given by Equations (9)–(12) and (14)–(17) in [49]. The damping coefficient � is set to
8.1× 103 s−1. The time-step size is 3.7× 10−3 s. The number of nonlinear iterations per time step
is 5, and the number of GMRES iterations per nonlinear iteration is 300. We use the ‘Selective
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Figure 14. Middle cerebral artery with aneurysm—bifurcating-artery segment. Flow field at various instants.
Velocity vectors coloured by magnitude.

Scaling’ technique (see Remark 14 in [49]) to emphasize the structure part by a factor of 5.0.
The S→F→FSI sequence is used in the computation. Figure 16 shows the mass balance and
Figure 17 shows the flow field at various instants.

4.4. Abdominal aortic aneurysm

The arterial geometry used was created by making use of the image data found in [59, 60], with
the arterial diameter and wall thickness coming from [61, 62]. The diameter of the artery segment
is 3 cm at the inflow and 2 cm at the two outflow ends. The length is 14 cm and the size of the
aneurysm is 6 cm. The problem geometry is shown in Figure 18. The pulsating inflow velocity
profile as a function of time is not shown here but has the same form as that shown in Figure 2 in
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Figure 15. Carotid-artery bifurcation. Problem geometry.

Figure 16. Carotid-artery bifurcation. Verification of mass balance. Volumetric inflow rate, difference
between the volumetric inflow and outflow rates and rate of change for the artery volume.
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Figure 17. Carotid-artery bifurcation. Flow field at various instants. Velocity vectors coloured by magnitude.

Section 4.1. The minimum and maximum values are 0.13 and 1.13m/s. The maximum value is
based on the data found in [63]. The traction condition at the outflow boundaries is based on a NBP
profile calculated in the way described in Section 3.2. That pressure profile is similar to the NBP
profile given in Figure 3 in Section 4.1.1. The structural model is based on the membrane element.
The wall thickness, stiffness and Poisson’s ratio for the artery are 2.3mm, 1.0× 106 N/m2 and
0.45, respectively.

The mesh for the artery consists of 6091 nodes and 12 072 three-node triangular elements.
The fluid mechanics mesh contains 49 826 nodes and 295 687 four-node tetrahedral elements. The
computations are carried out with the SSTFSI-SV technique (see Remarks 6 and 10 in [49]) and
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Figure 18. Abdominal aortic aneurysm. Problem geometry.

Figure 19. Abdominal aortic aneurysm. Verification of mass balance. Volumetric inflow rate, difference
between the volumetric inflow and outflow rates and rate of change for the artery volume.
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Figure 20. Abdominal aortic aneurysm. Flow field at various instants.
Velocity vectors coloured by magnitude.

the SUPG test function option WTSE (see Remark 2 in [49]). The stabilization parameters used are
those given by Equations (9)–(12) and Equations (14)–(17) in [49]. The damping coefficient � is set
to 5.65× 103 s−1. The time-step size is 4.4× 10−3 s. The number of nonlinear iterations per time
step is 5, and the number of GMRES iterations per nonlinear iteration is 100. The S→F→ FSI
sequence is used in the computations.

Figure 19 shows the mass balance, and Figure 20 shows the flow field at various instants.

5. CONCLUDING REMARKS

This paper was intended to be a sequel to a recent paper [49], where new, enhanced versions of
the deforming-spatial-domain/stabilized space–time (DSD/SST) and space–time fluid–structure
interaction (FSI) techniques were introduced to increase the scope, accuracy, robustness and
efficiency of these techniques. In the new stabilized space–time FSI (SSTFSI) techniques [49], the
aspects of the FSI solution process enhanced include the DSD/SST formulation, the fluid–structure
interface conditions, the preconditioning techniques used in iterative solution of the linear equation
systems, and a contact algorithm protecting the quality of the fluid mechanics mesh between the
structural surfaces coming into contact. A number of 3D numerical examples computed with the
new SSTFSI techniques were also presented in [49]. Our objective in this paper was to extend
the new SSTFSI techniques to FSI modelling in arterial fluid mechanics. We emphasized modelling
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of flow in arteries with aneurysm. The arterial structures can be modelled with the membrane or
continuum elements, both of which are geometrically nonlinear, and the continuum element can
be made of linearly elastic or hyperelastic (Mooney–Rivlin) material. We described here only
the mathematical models and computational techniques that go beyond what was described in
[49]. These additional topics were basically related to the structural modelling of the arteries. We
presented test computations for cerebral and abdominal aortic aneurysms and carotid-artery bifur-
cation. The arterial geometries used in the computations were close approximations to the patient-
specific image-based data. With the test computations presented, we showed that the new SSTFSI
techniques can successfully deal with different types of arterial problems and structural models.
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